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1 Introduction

A well known problem in computational electromagnetics is the appearance of

"spurious modes" arising from incorrectly imposing divergence constraints. To

avoid imposing these constraints directly, which is difficult, it has been suggested

that they need to be enforced only on the boundary of the domain ([5], [7]). This

has some significant advantages. For instance, the vector Helmholtz equation

with a divergence constraint on the field can then be solved using standard finite
element spaces instead of more complex spaces of edge elements. Furthermore,

as we will show below, the divergence boundary condition can be treated as a

natural boundary condition.

It is essential to know when the interior and boundary formulations of diver-

gence constraints give the same result and that is the main aim of this work. We

shall show that the formulations are equivalent if and only if the scalar Poisson

equation with any smooth right hand side and Dirichlet boundary conditions
has a solution in H 2. When this is not true, a simple minded application of

divergence boundary conditions as in [5] and [7] will normally give incorrect

solutions with a nonzero divergence.

Our results for systems with the interior divergence constraint are obtained

by formulating the problem in the space V defined in the next section. This

approach avoids enforcing the divergence constraint explicitly --- it is automati-

cally satisfied. We provide a proof of this fact for interior problems; for exterior

domains see [4]. Unfortunately, H 1 is not dense in V in general. To use stan-
dard H 1 finite elements we impose the divergence condition on the boundary

and formulate the problem in the space H01_ C H 1 defined below. We discuss

the relationship between the V and H_t formulations in some detail.

To avoid relatively unimportant technical issues we will give proofs of these

results for the vector Poisson equation subject to tangential boundary conditions

and a divergence constraint. In the end we will show how they may be extended

to other problems including the vector Helmholtz case of electromagnetics.
The next section gives the strong forms of the governing equations and the

reasoning behind the use of divergence boundary conditions. It also contains a

formula for the boundary divergence, which is used to reformulate the divergence

boundary condition as a natural boundary condition in H 1 setting. Section 3

sets up a weak form for the equation with the interior divergence constraint

and proves the coercivity for the weak form, which follows from a compact
embedding result for vector fields. Sections 4 and 5 prove coercivity for the weak

form which uses divergence boundary conditions. This time, coercivity follows

from a close and somewhat surprising connection with the previous weak form.

This result is based on a trace theorem proved in section 5.

The coercivity results of sections 3 5 are used in section 6 to prove equiv-

alence of the strong and weak formulations (Theorem 2). We also discuss in

what sense the boundary divergence condition is satisfied and prove a formula

for calculating the divergence on the boundary (Lemma 10 in section 6). Section
7 contains a discussion of when one can say a priori that the interior and bound-

ary divergence formulations are equivalent, and when they are not equivalent



(i.e.mayhavedifferentsolutionsforthesamedata).It alsocontainsanexam-
pleshowingnonequivalenceof thetwoformulationsfornonconvexpolyhedra.
In section8 wegivethemodificationsto includetheHelmholtzequationand
brieflymentionsomeotherextensions.Section9 mentionssomeimplications
for numericalapproximationsoftheproblem.

2 Formulation of the problems

Assume that _t is an open bounded subset of R N, N = 2 or 3, with a connected,

Lipchitz boundary F.
We will consider the relationship between the problems

-Au=f in_,div u = 0 in f/, (1)
uxn=0 onF

and

-/Xu=f inf/,
divu=0 onF,

u×n=0 ont.
(2)

We assume that f E L2(_) N and the compatibility condition div f -= 0 is

H_t(£_ ) = {u C Hl(fl) N I x nit = o}

satisfied. Superficially it seems that the two problems are equivalent. Indeed,

if u is a solution of (1), it is clearly a solution of (2). Conversely, if u is a

solution of (2), then taking the divergence of the first equation of (2) we get
that A(divu) = 0, and since divu = 0 on F, one might argue that divu = 0

in f_, so u is a solution of (1). This is basically the reasoning in [7]. But it
might not always be true. The difficulty is caused by insufficient regularity

of the solution. Laplace's equation with Dirichlet boundary conditions has a

unique solution in H 1 (£_), but in general we cannot assume that div u E H 1(f_).

It may be only in L2(fl) and the homogeneous equation for div u may have a
nonzero solution in L2(fl) (this happens, for example, in the case of domains

with reentrant corners).

In order to discuss the the relationship between (1) and (2) we first have to
make explicit in what function spaces we look for the solutions. It turns out

that the natural space for (1) is

Y = {u • L2(_) g {divu • L2(fl), curlu • L2(fl) g', u x n{r = 0},

where N _ = 3 if N = 3 and N' = 1 in N = 2. The standard scalar product in
V is

(u, v)v = Jf_ u. v + curl u- curl v + div u div V.

On the other hand, the natural space for (2) is



with thescalarproduct

(u,v)l = fnu'v+Vu'Vv-

We will show that while problem (1) has a unique solution in V, it may not

be solvable in Hdt(gt), and while problem (2) has a unique solution in H_t(_ ),

the solution may not be unique in V. We will also discuss in what sense the

divergence boundary condition in problem (2) is satisfied.

It is shown in section 6 (under the additional assumptions that F is piecewise

C 1'1 and the jump condition given in (6) is satisfied) that problem (2) (in

H_t(_t)) is equivalent to: find u E H01t(_) such that

-Au = f in _t,

0u_nn.n+_u.n=0 onr, (3)

I,u×n=0 onF,

where _ is the curvature of the boundary (_ = div n), which is defined almost

everywhere on F. This follows from the result (sec Lemma 10 for the precise

formulation)
0u

div ulr = _nn ' nit + _u. nit.

It is convenient to begin with the weak formulations of problems (1) and (3).

The next three sections deal with the coercivity of the corresponding weak forms.

Following this we show the equivalence of the strong and weak problems and

then examine the relationship of problems (1) and (3), and show the equivalence

of problems (2) and (3).

3 Weak Formulation in V

Let _t and f be as above. To derive the weak formulation of (1) in V we substitute

curlcurlu for -/ku in (1), multiply the first equation by v (belonging to V),
the second by div v and integrate by parts using the boundary condition. For

u, v E V define

v) = f_ curl u. curl v + div u div v. (4)a(u_

Then the statement of the weak problem is: find u C V such that

a(u,v):fa f'v Vv_V. (5)

The only hypothesis of the Lax-Milgram lemma which is nontrivial to check

is the coercivity of a on V. It follows from the next compact embedding theorem.
The embedding is actually a corollary of the regularity result in [1], where it is

proved that V C H1/2(_). We have provided a new and concise proof.



Theorem 1 V is compactly embedded in L2(12) N.

The proof makes use of Murat's div-curl lemma (see [8]).

Lemma 1 (div-curl lemma). Let U be an open subset of R N. Let vn and

wn be weakly convergent sequences in L2(U) N with the limits v and w corre-

spondingly. Assume that ,_divv_}_= 1 and {curlw,}_= 1 lie in compact subsets
of H-I(U) and H-I(U) N respectively. Then for every ¢ e D(U),

fv Cv. . w. _ fv ¢v . w as n--* o0.

Proof of Theorem 1. Let un be a weakly convergent sequence in V with the

limit u. We want to show that un converges strongly in L2(f_). The idea is

to extend un outside f_ in two ways: vn and wn will be the extensions with

"good" divergence and curl respectively. We construct the extensions so that
supp vn A supp wn C fl and then use div-curl lemma for these sequences.

Let U be an open ball containing fL We start with the construction of vn

(the extension with divvn in a compact set of H-I(u)). For each n E N we

define g,_ E H 1(U \ f_) by

Agn = 0 in U \ fl,

--_ =Un'n on0_,

gn = 0 on OU.

Now define vn by

and wn by

Then

and

{un in f_vn= Vgin inUkfl

Wn={o n inflin U\I2.

divvn = {_ivu, inf',in U\f_

/

curlwn = _curlu. in f_,

(0 in U\f/

so {divv,_}_=I and {curl wn}n°°=lare bounded subsetsof L2(U) ,andL2(f_)N',

respectively (hence lie in compact sets of H-I(U) and H-I(_) N ). Moreover,
v_ --_ v in L2(U) N and wn -_ w in L2(U) N, where v and w are similar
extensions of u.



Nowchoose¢ E :D(U)suchthat ¢ -- 1 in _. Usingthediv-curllemmawe
get(notethat v,_•wn-- 0 in U \ _)

J.'/.o /. /..'.U n _ V n "W n _ _V "W ---_

This together with un --_ u in L2(_) shows that un --_ u in L2(ft).

We will use Peetre's lemma (see [2], for example) in the following form

Lemma 2 Let E, E1 and E2 be Banach spaces. Let A1 and A2 be continuous

linear operators from E to E1 and from E to E2 respectively. Assume that there
exists C > 0 such that

Ilull_ < c (llAlull_l + IIA_ulL_) Vu e E.

Assume also that KerA1 = {0} and that A2 is compact. Then there is C1 > 0
such that

IlullE --<CxllAlullE_ Vu • E.

The coercivity result is then

Lemma 3 There is C > O, independent of v, such that

a(v,v)__CIIvll _ Vv•V

Proof. We use Lemma 2 with E = V, E1 = L2(f_) x L2(f_) N', E2 = L2(f_) N

and AlU = (divu, eurlu), A2u = u. By Lemma 1 the operator As is compact.
We must show that Ker A1 = {0}. But

u•KerA1 ¢*divu=0andeurlu=0inf_, anduxn=0onF.

This implies that u = 0 (by using the gradient potential, for example). So by
Lemma 2 the result follows.

The Lax-Milgram lemma now implies that (5) has a unique, stable solution
in V.

4 Weak Formulation in Hlt(_2)

For deriving the weak form of (3) we shall make additional assumptions about
the smoothness of the boundary. In the following f_ is a bounded subset of R N,

N = 2 or 3, with a connected, Lipchitz and piecewise C 1'1 boundary F, i.e.
o o

F = Uj___IFj with Fj A Fi-- 0 for i _ j, and Fj, j = 1,... , n are of class C 1'1.
Let _ denote the set of "edges and corners", i.e.

i,j=l



We assume that the jump of the normal on "y is bounded below, i.e. there is

(f > 0 such that for all x E "y with x E Fi A Fj, i _ j we have

,'(x). n:(x) < 1 - _, (6)

where n i (x) and n j (x) are the limits of the unit outer normals when approaching

x from F{ and F j, correspondingly.
This condition is satisfied for all polygons and polyhedra. Also included are

polygons and polyhedra with curved sides. It excludes three-dimensional bodies

which have points like the tip of a cone, and bodies with edges which "flatten

out", i.e. the angle between the faces gets arbitrarily close to 7r. This condition

is needed for proving some results about trace operators in the next section,

and implicitly in the proof of Lemma 4, which gives the relation between the
two weak forms.

To obtain a suitable weak form for (3) we proceed formally, multiplying the

equation by a test function v E H01_(_) and integrating by parts as usual. We
get

£ /0u £Vu. Vv - _nn " v ---- f.v.

Rewriting the boundary term as a sum over the smooth boundary pieces and

using the boundary conditions on u and v gives the weak problem: find u E

Hol_(fl) such that

n

Since _ E L_(Fj), by the usual trace theorem the boundary term is well de-

fined. Note that, in this framework, the divergence boundary condition (or the
equivalent one in problem (3)) is natural.

Proving coercivity of the weak form (7) is a nontrivial matter because the

curvature can be of either sign. The result will follow from the next lemma

whose proof is deferred to the following section.

Lemma 4 Assume that _ satisfies the assumptions made in the beginning of

the section. For u,v E H01t(_) we have

a(u, v) = fn Vu. Vv + )-_ f_ _u.v, (S)
j=l -_

where Fj, j = 1,... ,n are the smooth (C 1'1) pieces ofF, and a is the same as

in (4).

This means that the weak problem (7) is in fact equivalent to: Find u E

H_t (l)) such that

a(u,v)=ff.v VvEHI,(_), (9)
g_



in which the equation is the same as in (5) but the spaces are different.

In fact, one can get (9) from problem (1), but they are not equivalent:

in general we cannot assume that the solution of (1) belongs to H_t(l_), and

we cannot prove later that the solution of (9) satisfies divu = O. We can

also formally get (9) from (2) by substituting -/ku by curl curl u - Vdiv u,

multiplying by v and integrating by parts using the boundary conditions, but
this is not easy to justify rigorously (for the solution of (2), curlcurlu and

Vdiv u may not be in L2).

The coercivity result for (9) is:

Lemma 5 There is C > 0 such that

a(u,v) > Cllulll Vu • H_t(12 ).

Proof. We use Lemma 2 with E = H01_(f_), E1 -- L2(f_) x L2(f_) g', E2 --

L2(_) y × L2(F) N, Alu = (divu, curl u) and A2u -- (u, ulr ). The operator
A2 : E ---* E2 is compact because it is bounded as an operator from E to

H 1(12) x HW2 (F) N and the latter is compactly embedded into E2. We already

showed (in the proof of Lemma 3) that Ker A1 = {0}. The result follows.

Applying the Lax-Milgram lemma to the weak form (9) (or, equivalently, to

(9)) and using the coercivity result above shows the existence of a unique stable

solution to (9).

Note that to prove the coercivity of a in Hit (ft) we do not need the additional

smoothness assumptions made in the beginning of this section: they are needed

to make sense of the term containing the curvature in (7) and to show later that
the divergence boundary condition is satisfied for thc solution of problem (9).

They are not needed for uniqueness of solution of (9).

5 Proofs for previous section

This section will present the proof of Lemma 4. We will assume throughout the

section that the assumptions made in the beginning of the previous section arc
satisfied.

First we need somc preliminary results. We begin by recalling some facts

about the trace spaces. First, for Lipchitz F C R N , the following is an equivalent

norm on H1/2(F) (see e.g. [3]):

HCH_/1/2(r) H¢]'_2(F)+ Jr _r I¢(x)-¢(Y)I2dSxdSy"=  :y-V
1/2

We will also need the spaces H00 (Fj), j = 1,... , n, which consist of all func-

tions in H1/2(Fj) whose extension by zero to F belongs to HW2(F). The norm
1/2

of a function in H00 (Fj) is the norm of its extension by zero in H1/2(F), i.e.

11¢112olo/2(r_) ---- 11¢1122(rj) ÷ fr, fr_ I¢(x) -- ¢(Y)12"lx--yl-- _ dSxdSy

ix_ ylN x y-



x/2Wewill usethesamenotationfor afunctionin H00 (Fj) and its extension by
zero to F.

We will also need the following result:

Lemma 6 The trace operator v _-* v. nit j is a continuous linear operator from
1/2

H01t(_2) onto Hoo (Fj).

Proof. We use the fact that the usual trace operator v _-* vlr is a continuous
linear operator from H 1(f_)N onto H1/2(F) N. First we will show that ifv ×n = 0

and the jump condition (6) is satisfied, then IIv. nil Hool/2(rj) --<CIIVllH1/2(r ). Let

¢ = v. n on Fj and ¢ = 0 on F \ F i. Clearly II¢llH1/2(rj) < Ilvllul/2(rj), so we
have to show only that

fr Jr 1¢(x)t2 dSxdSy < CIIvll_/2(r_).
\r, _ Ix- yl N

Because of the jump condition we can find s > 0 such that

x E r:, y E F \ Fj, Ix - yl < _ _ n(x). n(y) _< 1 - -2

ForxEF i,yEF\Fj such that Ix-yl<ewehave

Iv(x) - v(y)12 = Iv(x)l_ + tv(y)l 2 - 2(v(x). n(x))(v(y), n(y))(n(x)- n(y))

>_1¢(x)12 + Iv(y)12- 210(x)1 ]v(y)l (1-_)

> 'ff(x)12 (1 - (1 - _)2) : 1¢(x)12 ('- -_) .

6 2

Since _ - _- > 0 (note that 0 < J < 2, otherwise the jump condition could not
be satisfied), we have

L¢(x)12de [[ I¢(x)12dS dS

Jr fr l fr fr 'v(x)-v(Y"2dSxdSy< -J1 \r, , I¢(x)12dSxdSy + _ \r_ j Ix - YlN

< CIIvtl .2(r).

Consequently, the operator v _-* v • nlr j is a continuous linear operator from
1/2

H01t(f_) to g00 (Fj).
1/2

Let ¢ E H00 (Fj) be given. Extend it by 0 to F. Then Cn E Hx/2(F) and

we can find v e Hl(f_) N such that vlr = Cn and Ilvlll < CIlCnllH_/2(r ) <



C1 II¢llHo_o/2(rj).Clearly v • H_t(f_), so the trace operator is onto.

The next lemma gives a formula for calculating the divergence on the bound-

ary.

Lemma 7 For smooth u the restriction of div u to ['j satisfies

Ou ) rjdivulr j = divru,+tcu.n+on-n

where u, is the tangential component of u and divr is the divergence of a tan-

gential vector field in the tangential coordinate system.

Proof. To calculate div u at some xo • Fj let us fix a coordinate system i, j,

k (if N = 2 then omit j), where i, j are tangent to F at xo and k is the normal at

xo (we can do this for every x0 in the interior of Fj). Denote ur = u - (u. n)n.
Then

0u 0u 0u

div u(xo) = _-1 (Xo)" i+ _-j-(xo)"j + _--_(Xo)" k

Ou. Ou. O[(u. n)nl
- oi (xo).i+-_-(xo).j+ oi

0u

+ _(xo)- n(xo)

= divru,+_u.n+on-n

O[(u. n)n] (xo)-j
(xo). i + oj

where
OuT 0u,

divru_(xo) = --_-1 (Xo)- i + --0-j- (xo) .j.

Now we can prove lemma 4:
Proof of Lemma 4. For v • H_t(f_ ) and smooth u (we do not require

u x n = 0 yet, because it does not seem straightforward to show the density of

smooth functions with zero tangential trace in H_t(f_)) we have

£ curlu • curly + div u div v = fa eurleurl u • v - Vdivu • v + fr(div u)v "n

v÷/  ivu,vn
£= Vu. Vv+ _Uvu-N.n v-n.

By Lemma 7

n

£curlu-curlv+divudivv=fnVu-Vv+j_lfr (divru_+_u'n)v'n.
= _ (10)



Forany¢ E H1/2(Fj) (extended by zero to F) we can find v E Hit(12) such

that vlr ----Cn and IlVlll __ CII¢IIHolo/2(Fi). From (10) we get

/r (divru_ + _u. n)¢ < < C"ll¢lIHo_o/2(rj)llulllC'llv[llllulll
J

v¢ • g0_0/2(r_),Vu smooth.

By density of smooth functions in Hl(_) and Hahn-Banach theorem we can

continue the mapping u _-_ (divru_ + _u. n)Ir_ uniquely to a continuous linear

mapping from g:(f_) N to (H_0/2(Fj)) '. Since for any v • Hlt(f_), v.n •

H1/2(Fj) (by aemma 6), (10) holds for all u • g:(f_) N and v • Hlt(_) (the

integrals over Fj have a meaning as a duality pairing between (H10/2(Fj)) ' and

To finish the proof we need to show only that ifu • H_t (f_), then divru_ = 0

on F t. For this first note that since u _-_ au. nit _ is linear and continuous from

H 1(f_)N to L2(Fj) C (H0_0/2(r_.))', the operator u _-* divru_ Ir_ is also continuous

from H:(12) N to (H1/2(Fj)) ', and then use the fact that

=-/_ u_.V_¢ v¢•cJ(rj)<divru_, ¢)r_
Jl' J

:/5
and the density of C_(Fj) in H00 (Fj).

6 Equivalence of the Strong and Weak Forms

In this section we will prove that (1) in V is equivalent to the weak problem

(5), and that (3) in H_t(12 ) is equivalent to the weak problem (7). It follows

that problem (1) is uniquely solvable in V and problem (3) is uniquely solvable

in Hlt(f_). We will also show that problems (2) and (3) are equivalent with the

divergence boundary condition having a meaning in the sense of traces.

Let us first deal with problem (1).

Lemma 8 Let f_ and f be as in Section 2. Then the problem of finding u • V

satisfying (1) is equivalent to solving the weak problem (5).

Proof. Let u • V be a solution of (1). Then -Au ----curlcurlu • L2(_))

and so the formal calculations leading to (5) can be rigorously justified.

Conversely, if u • V satisfies (5), then by using v • T)(fl) N and transferring

all derivatives to v we get -Au -- f in the sense of distributions. For any

¢ • T)(f_) we can findg • H_(f_) such that /kg = ¢. Now use v = Vgin the

weak form (note that Vg • V). We get

_(divu)¢=_f'Wg=-_(divf)g+fr(f'n)g=O,

10



sodivu = 0 in thesenseofdistributions.Consequentlytheproblem(1)(in V)

and the weak form (5) are equivalent.

Oorollary 1 The problem (1) has a unique solution uy in V.

In the proof of the theorem we used the fact that Vg E V. If we were dealing

with the weak form in H_t(ft), then Vg may not have been a legitimate test

function (in the case g _ H2(f_)), which would make it impossible to prove that
divu = 0. This is the difference between the weak problems (5) and (9), even

though they appear very similar.

The corresponding proof for the problem (3) is a little more difficult, but
follows the same pattern.

Lemma 9 Let f_ and f be as in Section 2. Assume in addition that the boundary

F is piecewise C 1'1 and the jump condition (6) is satisfied. Then the problem of

finding u E Hdt (12) satisfying (3) is equivalent to solving the weak problem (7).

Proof. We first have to show that the boundary condition

au
---n+gu.n=0 onF
an

has a meaning for u E Hdt(f_) with Au E L2(12). Since Vu E L2(12) N and
au

divVu E L2(I2), the gradient has a normal trace on the boundary Onn E
1/2

H-1/2(F) (see [2] for example). For ¢ E H00 (Fj) we have Cn E Ha/2(F)

(using the extension of ¢ by zero) and therefore the boundary condition may be

interpreted as

0U l_I 1/2
(_nn + _u, Cn)r = 0 V¢ E H00 (Fj), (11)

j=l

or, equivalently,

{0u + _u,v)r = 0 Vv E Hlt(f_), (12)
On

where (., ")r is the duality pairing between H-1/2(F) and H1/2(F).

Let u E Hdt(f_ ) be a solution of (3). Using (12) we can justify to formal cal-

culations leading to the weak form (7) (the boundary integrals in the weak form
1/2 t 1/2

should be understood as duality pairings between (Hoo (Fj)) and H00 (Fj)).

Conversely, if u E Hdt(_ ) satisfies (7), then by using v E 79(f_) N we get as
before -Au = f in the sense of distributions. For any v E Hlt(f_), integrating

by parts in the weak form (note that/ku E L2(_) N) we get

- fa Au- v + (0b-_n,V)r + _ f r _u.v= _f.v,
i=1 -_

hence (12) is satisfied. Consequently the problem (3) (in H_t (a)) and the weak

form (7) are equivalent.

11



Corollary 2 The problem (3) has a unique solution fi in H_t(f_ ).

Now we will show that problems (2) and (3) are equivalent. The only dif-

ference in these two problems is in the boundary condition, so we have to show

that the divergence boundary condition makes sense and is equivalent to the

boundary conditon in (3). This is done in the following lemma.

Lemma 10 Assume f_ satisfies the conditions of Lemma 9. For u E H_t(fl )

with z_u E L2(_) N, and any j • {1,... ,n}, the trace ofdivu on Fj exists and
1/2 !

belongs to (Hoo (Fj)) , and

Ou

div ulr _ = 0--n" nlrj + _u. nit j.

Proof. This follows from Lemma (7) which gives the formula for smooth u

without the condition u × n = 0. By density this can be extended to u E H 1 (f_) g

with Au E L2(_) g. Then use the fact that for u E Hdt(f_ ) we have div ru_ = 0

(see the end of proof of Lemma 4).

Corollary 3 Problems (2) and (3) are equivalent.

Let us summarize the results in a theorem:

Theorem 2 Assume that 12 is a bounded subset of R N with a connected, Lip-

schitz boundary. Let f E L2(_) g with divf -- 0 be given. Then

a) The problem (1) in V is equivalent to the weak form (5) and has a unique

solution uy E V.

b) If in addition the boundary is piecewise C 1,1 and satisfies the jump con-

dition (6), then the problems (2) and (3) in H_t (f_) are both equivalent to weak

problems (7) and (9), and have a unique solution UH • Hit(12).

7 Relationship of the V and H_t(f_ ) Formulations

Let uv • V be the solution of (5) (or the strong form (1 with the interior

divergence condition) and let UH E HXot(f_) be the solution of (9) (which under

the additional smoothness conditions is equivalent to problems (2) and (3) with

the divergence boundary condition). In this section we will discuss when the
two solutions are the same. The following is clearly true.

Lemma 11 Let 12 and f be as in Section 2. Assume in addition that the jump

condition (6) is satisfied. Then the following are equivalent

a) uV _ UH;

b) div UH = 0 in fl;

c) uv • H_t(12).

Let us now examine when uy = UH. First, note that lemma 5 implies

that Hdt(_2) is closed in Y. We have two possibilities: either Y = H_t(fl )

or V _ H_t(12 ). In the first case the solutions are obviously the same (the

corresponding weak forms are exactly the same). The following lemma gives
the necessary and sufficient conditions for the equality of the spaces.

12



Lemma12 Assume that _ is a bounded subset of R N with a connected Lip-

schitz boundary. The spaces V and Hit (_) are equal if and only if the homo-

geneous Dirichlet problem for the scalar Poisson equation with any right hand

side in D(_) has a solution in H2(_).

Proof. Suppose that the regularity condition holds. For any given w E V

we can solve the weak problem: find u E Hit(_ ) such that

a(u,v) -a(w,v) Vv • H01t(_) (13)

(i.e. u is a projection of w onto Hit(_ ) corresponding to the scalar product

a(.,.) ). As in the proof of Lemma8 we can show that /k(u-w) = 0, and
using the H2-regularity of the solution of the Dirichlet problem for the Poisson

equation we also get div (u - w) = 0. Since (u-w) x n{r = 0, by the uniqueness

of solution of (1) we have u = w, i.e. w • H_t(_ ). Consequently Y = Hit(_ ).

Now suppose that there is g • Hi(_ ) such that/kg E :D(_), but g _ H2(_t).

Then Vg • V, but Vg _ H_t(_ ), so V _ Hi_(_ ).

Note that the lemma remains true if one substitutes L2(_) for T_(_t).

Corollary 4 If _ is convex or has a C 1'1 boundary then V = H_t(_ ).

This follows from the classical regularity theory about the smoothness of the

solution of the Dirichlet problem for the Poisson equation. It is actually enough
to assume that _ is locally convex near the points where the boundary is not

C 1'1 (i.e. these points have a neighborhood whose intersection with _ is convex).

The question of the equality of these spaces (and analogous ones with a

boundary condition for the normal trace) has been partly answered by different

authors, but we are unaware of results as sharp as these presented here. In the

classical book [2] it is proved that V = H_t (_t) if _ is a convex polygon or has

a C 1A boundary. Necessary and sufficient conditions for V = H01t (_) to hold in

R 2 are given in [6], namely that the scalar Poisson equation with L2(_) right
hand side must have a solution in H2(_'t) both with Dirichlet and Neumann

condition. As we saw, the regularity of solution of the Neumann problem is

not needed, and in R 2 it actually follows from the regularity of solution of the

Dirichlet problem.

In the other case, when Hit(_ ) and V are not identical, since Hi_(_ ) is

closed in V, there is f • L2(_) with divf = 0 for which the solution of (1) is in

V, but not in Hit(Ft ). This means that the interior and boundary divergence
formulations are not equivalent and give different solutions for this f. We will

show how to construct f for which uy _ UH whenever V _ H_t(_t ).

Lemma 13 If Y _ Hlt (_ ) than there is f • L 2 ( _ ) with divf = 0 such that the

corresponding solution of (1) is not in Hit(_ ).

Proof. If V _ Hit (_) then we can choose a nonzero w • V such that

a(w, v) = 0 Vv • H_t(_ ). (14)
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First note that curl w ¢ 0: indeed, if we had curl w -- 0 then

_divw.divv = 0 Vv H01_(n),E (15)

and hence (by using v E T)(f_)g)), Vdivw ---- 0, or divw =const. It follows

from (15) that fn divv = 0 for all v E Hit(12), which is a contradiction.
Now let f E V be a solution of

a(f,v) = _curlw.curlv Vv E V. (16)

Note that f _ 0 and div f -- 0. We claim that for this f problem (1) has a

solution uy E V which is not in H01_(f_). Indeed, using the weak problem (5)
and (16) we get

a(u,w) = _ curlu • curlw = a(u, f) = _ ,f,2 _ 0,

which by (14) implies that uy _ Hole(_).

We can also give a more tangible example of a solution of (1) which does
not belong to H_(f}). Suppose f_ C R 3 is such that in a neighborhood of some

x0 E F its boundary consists of 2 planes with the interior angle c_ > 7r. Choose

a cylindrical coordinate system (r, 0, z) with the origin at xo, z-axis along the

edge and 0 = 0, 0 = c_ on the boundary. Let ¢ E CC¢(_), depending on r and

z only, be such that ¢ -- 1 near the origin and ¢ - 0 outside a neighborhood of

the origin where the pieces of F are planar. Put

u(x, y, z) = curl ¢(r,z)r _/_cos-ez ,

where ez is the unit vector in direction of z-axis. Then div u -- 0 and

u×n= On r,z)r _/acos ez---0 onF.

It follows that u is a solution of (1) with f = -/ku E L2(i2) and div f = 0. In

addition, f - 0 near the origin. Since u ¢_H01t (12) and the problem (2) with the

same f has a solution _ E H01_(f_), we must have 5 ¢ u and div fi ¢ 0.
This example is essentially two-dimensional. To make it work for 12 C R 2

in a neighborhood of a corner with the interior angle a > r we just use ¢

independent of z. Note that the third component of u is zero, and we get

e •
We will state these results as a theorem:

Theorem 3 Assume that f} is a bounded subset of R N with a Lipschitz bound-

ary. The following are equivalent:

a) uy = UH for any f • L2(f_) N with divf = 0;

b) V = H_,(_);

c) the Dirichlet problem /or the scalar Poisson equation with any smooth

right hand side has a solution in H2(fl).
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8 Generalization to Helmholtz equation

Most of the arguments above remain true in case of Helmholtz equation. The

only difference is in the coercivity, which now will not be sufficient for using

Lax-Milgram. Let us sketch the results briefly. The analog of problem (1) is
now: find u E V such that

-Au-kSu=f infl,
divu : 0 in f_, (17)

uxn:O onF.

We assume that f C L2(fl) N and the compatibility condition div f = 0 is satis-
fied. To formulate the weak problem let us define

b(u, v) = _ curl u. curl v + div u div v - k2u • v Vu, v E V.

Then the weak problem corresponding to (17) is to find u E V such that

b(u,v)=_f.v Vv•V. (18)

The coercivity result is that b(u,u) > Cilull 2 - kSilull_2 (if k s is complex,
we should use the real part). We cannot use Lax-Milgram directly. Instead
we can use the Fredholm alternative to show the existence and uniqueness of

the solution. Define operator Av : LS(f_) --* LS(f_) by the requirement that

Ayg • V is the solution of a(u, v) = f_ g- v Vv • V (note that we do not need
the compatibility condition div g : 0 to guarantee the solvability of the weak

problem). By the Lax-Milgram Lemma and the compact embedding theorem

(Theorem 1) Av is a compact operator. Then the solution of (18) is the solution

of u = Ay(kSu + f), and if 1/k 2 is not an eigenvalue of Av then (18) has a
unique solution u • V. The operator Av has two kinds of eigenfunctions: ones

that are divergence-free, and others which are gradients of the eigenfunctions of

the scalar laplacian with Dirichlet boundary conditions. Assuming that 1/k 2 is

not an eigenvalue of Av, one can prove the equivalence of the strong and weak

problems similarly to the proof of Lemma 8 (in proving that the solution of the

weak form satisfies the divergence condition we need solvability of the scalar
Helmholtz equation with Dirichlet boundary conditions, which follows from the

fact that if 1/k s is not an eigenvalue of Av, then it is not an eigenvalue of the

scalar laplacian with the Dirichlet boundary conditions).

The analog of problem (2) is to find u • H_(f_) such that

--/'xu -- k2u = f in f_,
divu = 0 on F, (19)

uxn=0 onF

and the corresponding weak problem is to find u • H_(f_) such that

b(u, v) : f f. v Vv • H_ (f_). (20)
J_
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Onecandealwith thecoercivityasabove,usingtheoperatorAH : L2(_) ---*

L2(fl) defined by: AHg e Hlt(_) is the solution ofa(u, v) = f g.v Vv • H(_t(12).

Equivalence of the strong and weak forms follows similarly to the zero frequency
case.

The question when the two weak problems (18) and (20) give the same
solution can be answered as in section 7. Most of the results presented there do

not depend on the frequency. The counterexamples are also easy to modify: if

uv _ H_t(_ ) is a solution of (1), then it is also a solution of (17) with the right

hand side f- k2uv. Theorem 3 remains true if we assume in addition that 1/k 2

is not an eigenvalue of either Av or AH and let uy and UH be the solutions of

the weak problems (18) and (20) correspondingly.

Similar results can be proved for time-dependent problems, such as vec-

tor wave equation and Maxwell's equations. Even with divergence-free initial

conditions, using a weak form in H_t(_ ) (similar to (20)) may give a solution

not satisfying the divergence constraint. Again, this can happen only if the
H2-regularity of the Dirichlet problem for the scalar Poisson equation fails.

9 Conclusions

We saw that in some cases (e.g. for nonconvex polygons) the boundary diver-

gence formulation is not equivalent to the interior divergence formulation, and

the weak form (9) or (20) (the weak forms in Hdt(fl)), while uniquely solvable,

may not have a divergence-free solution. In this case all approximation meth-
ods based on these weak formulations (e.g. the usual finite element method,

the least squares method) will converge to a spurious solution (not satisfying

the divergence constraint). To avoid the spurious solution, one should use the
weak form in V, but this is not straightforward: one has to use basis functions

which are in V, but not in H_t(_ ) (e.g. the singular solutions around the re-

entrant corners), in addition to the usual ones. The same is true about the

penalty method, where the weak form contains a penalty parameter in front

of the term with divergence. If the solution of the original problem is not in
Hit (_), then any choice of the penalty parameter will result in a spurious solu-

tion -- in fact, the smaller one makes the divergence (by choosing larger values

of the parameter), the bigger the error is in the curl of the solution.

On the other hand, when the formulations are equivalent (this is the case

when the solution of the Dirichlet problem for the scalar Poisson equation is in

H2(_)), then one can use the weak forms in H_)t(_t ). This enables one to use

simpler algorithms, e.g. finite element methods with piecewise linear test and

trial functions. The equivalent formulation in terms of gradients (as in (7)) may

be especially useful, since it decouples the field components inside the domain.
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